MEMO 2017 pojedinačno problem 3


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 6.0
Dodao/la: arhiva
Sept. 12, 2018
LaTeX PDF

Let ABCDE be a convex pentagon. Let P be the intersection of the lines CE and BD. Assume that \angle PAD = \angle ACB and \angle CAP = \angle EDA.
Prove that the circumcentres of the triangles ABC and ADE are collinear with P.

Source: Srednjoeuropska matematička olimpijada 2017, pojedinačno natjecanje, problem 3