MEMO 2017 ekipno problem 8
Dodao/la:
arhiva12. rujna 2018. For an integer $n \geqslant 3$ we define the sequence $\alpha_1, \alpha_2, \ldots, \alpha_k$ as the sequence of exponents in the prime factorization of $n! = p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_k^{\alpha_k}$, where $p_1 < p_2 < \ldots < p_k$ are primes. Determine all integers $n \geq 3$ for which $\alpha_1, \alpha_2, \ldots, \alpha_k$ is a geometric progression.
Izvor: Srednjoeuropska matematička olimpijada 2017, ekipno natjecanje, problem 8