« Vrati se
Neka su x, y, z pozitivni realni brojevi, takvi da je xyz = 1. Dokaži da vrijedi  \frac{x^{3} + y^{3}}{x^{2} + xy + y^{2}} + \frac{y^{3} + z^{3}}{y^{2} + yz + z^{2}} + \frac{z^{3} + x^{3}}{z^{2} + zx + x^{2}} \geqslant 2 \text{.}

Slični zadaci

Odredi najveći cijeli broj n za koji vrijedi nejednakost 3\left(n-\dfrac 53\right)-2(4n+1)>6n+5\text{.}
Dokažite da za pozitivne brojeve a, b, c vrijedi nejednakost

\frac{a^2}{(a+b)(a+c)} + \frac{b^2}{(b+a)(b+c)} + \frac{c^2}{(c+a)(c+b)} \geq \frac{3}{4}.
Neka su a, b i c pozitivni realni brojevi za koje vrijedi a^2 + b^2 + c^2 = \frac{1}{2}. Dokaži nejednakost  \frac{1 - a^2 + c^2}{c\left(a + 2 b\right)} + \frac{1 - b^2 + a^2}{a \left(b + 2 c\right)} + \frac{1 - c^2 + b^2}{b \left(c + 2 a\right)} \geqslant 6 \text{.}
Produkt pozitivnih realnih brojeva x, y i z jednak je 1. Ako je \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geqslant x + y + z \text{,} dokažite da je \frac{1}{x^k} + \frac{1}{y^k} + \frac{1}{z^k} \geqslant x^k + y^k + z^k \text{,} za svaki prirodan broj k.
Neka su a, b, c pozitivni relani brojevi takvi da je a + b + c = 1. Dokažite da vrijedi nejednakost
\dfrac{a^3}{a^2 + b^2} + \dfrac{b^3}{b^2 + c^2} + \dfrac{c^3}{c^2 + a^2} \geq \dfrac{1}{2}\text{.}
Brojevi a, b, c, d zadovoljavaju relaciju a+b+c+d=0. Neka je S_1=ab+bc+cd i S_2=ac+ad+bd. Pokažite da je 5S_1+8S_2 \leqslant 0 \qquad \text{i} \qquad 8S_1+5S_2 \leqslant 0 \text{.}