Državno natjecanje 2007 SŠ4 4


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 5,0
Dodao/la: arhiva
1. travnja 2012.
LaTeX PDF
Šiljastokutni trokut ABC kome su A_1, B_1 i C_1 polovišta stranica \overline{BC}, \overline{CA} i \overline{AB} upisan je u kružnicu sa središtem u točki O polumjera 1. Dokažite da je
\frac{1}{|OA_1|}+\frac{1}{|OB_1|}+\frac{1}{|OC_1|} \geq 6
Izvor: Državno natjecanje iz matematike 2007