HMO 2014 - Izborni test za MEMO - Zadatak 1
Dodao/la:
arhiva17. listopada 2023. Za dani prirodni broj $n$ nađi najmanji prirodni broj $k$ sa sljedećim svojstvom:\\
Ako su $a_1, a_2, \ldots, a_d$ realni brojevi, $0\leqslant a_i\leqslant 1$, $a_1 + a_2 + \dotsb + a_d = n$, tada je moguće rasporediti tih $d$ brojeva u $k$ grupa tako da je zbroj brojeva u svakoj grupi najviše $1$ (neke grupe mogu biti prazne).
Izvor: Hrvatska matematička olimpijada 2014.