Županijsko natjecanje 2000 SŠ4 2


Kvaliteta:
  Avg: 4,0
Težina:
  Avg: 4,0
a) Ako su x_1, x_2\in (0,\displaystyle\frac{\pi }{2}), dokažite: 
\frac{\cos x_1+\cos x_2}{2}\leq \cos \frac{x_1+x_2}{2}.
b) Ako su x_1, x_2, \dots, x_{2^k}\in \left(0,\displaystyle\frac{\pi}{2}\right), dokažite: 
\frac{1}{2^k} \sum _{j=1}^{2^k} \cos x_j \leq \cos \left( \dfrac{1}{2^k} \sum_{j=1}^{2^k} x_j \right), \,\, \text{za} \, k \in \mathbb{N} \text{.}
c) Ako su x_1, x_2, \dots, x_n\in \left(0,\displaystyle\frac{\pi}{2}\right), dokažite: 
\frac{1}{n} \sum _{j=1}^{n} \cos x_j \leq \cos \left( \dfrac{1}{n} \sum_{j=1}^{n}x_j \right), \,\, \text{za} \, n \in \mathbb{N} \text{.}
Izvor: Županijsko natjecanje iz matematike 2000