HMO 2021 - Izborni test za IMO - Zadatak 2
Avg:
Avg:
Neka je prirodan broj i neka je
. Neka su
međusobno različiti realni brojevi takvi da za sve
vrijedi: ako je
, onda je
Neka je prirodan broj takav da je
. Dokaži da postoje
-člani podskupovi
takvi da vrijedi jedna od sljedeće dvije tvrdnje:
(a) za sve vrijedi: ako je
, onda je
, za sve
,
(b) za sve vrijedi: ako je
, onda je
, za sve
.
Izvor: Hrvatska matematička olimpijada 2021.