« Vrati se
Neka je ABCD kvadrat i P točka na kružnici opisanoj kvadratu na luku AB koji ne sadrži točku C. Koje vrijednosti može poprimiti izraz
\frac{|AP| + |BP|}{|CP| + |DP|}\text{?}

Slični zadaci

Dane su točke B i C, dok je A varijabilna, takva da je \angle BAC fiksan. Polovišta stranica \overline{AB} i \overline{AC} su točke D i E redom. Točke F i G su takve da je DF \perp AB i EG \perp AC, a BF i CG su okomite na BC. Dokažite da umnožak |BF| \cdot |CG| ne ovisi o položaju točke A.
U ravnini su dane dvije različite točke O i P. Odaberimo paralelogram ABCD kojem je točka O središte. Označimo s M i N redom polovišta dužina \overline{AP} i \overline{BP}. Točka Q je presjek dužina \overline{MC} i \overline{ND}. Dokažite da točke O, Q i P leže na istom pravcu i da točka Q ne ovisi o izboru paralelograma ABCD.
U jednakokračnom trokutu ABC s krakovima \overline{AB} i \overline{AC}, D je polovište osnovice \overline{BC}. Neka je točka E nožište okomice iz D na stranicu \overline{AB}, te F polovište dužine \overline{DE}. Dokaži da je AF okomito na EC.
Neka je točka S središte opisane kružnice trokuta ABC s kutovima \alpha=\angle{BAC} i \beta = \angle{CBA}. Neka pravac CS siječe pravac AB u točki D koja se nalazi između točaka A i B. Dokaži da vrijedi  \frac{\left\vert SD \right\vert}{\left\vert SC \right\vert} = \left\vert \frac{\cos\left(\alpha + \beta\right)}{\cos\left(\alpha-\beta\right)}\right\vert \text{.}
Neka je točka N nožište visine iz vrha A šiljastokutnog trokuta ABC, točke P i Q redom nožišta okomica iz točke N na stranice \overline{AB} i \overline{AC}, a točka O središte opisane kružnice danog trokuta. Ako vrijedi \left\vert AC \right\vert = 2\left\vert OP \right\vert, dokaži da vrijedi \left\vert AB \right\vert = 2\left\vert OQ \right\vert.
U trokutu ABC vrijedi \left\vert AB \right\vert = \left\vert AC \right\vert. Na stranici \overline{AC} nalazi se točka D takva da je \left\vert AD \right\vert < \left\vert CD \right\vert, a na dužini \overline{BD} točka P takva da je \angle{APC} pravi kut. Ako je \angle{ABP} = \angle{BCP}, odredi \left\vert AD \right\vert : \left\vert CD \right\vert.