IMO 2015 zadatak 1
Kvaliteta:
Avg: 4,0Težina:
Avg: 6,0 Konačan skup
točaka u ravnini je balansiran ako za bilo koje dvije različite točke
i
u
postoji točka
u
takva da je
. Kažemo da je
ekscentričan ako ni za koje tri u parovima različite točke
,
i
u
ne postoji točka
u
takva da je
.
(a) Dokaži da za svaki prirodni broj
postoji balansirani skup koji se sastoji od
točaka.
(b) Odredi sve prirodne brojeve
za koje postoji balansirani ekscentrični skup koji se sastoji od
točaka.
točaka u ravnini je balansiran ako za bilo koje dvije različite točke
i
u
postoji točka
u
takva da je
. Kažemo da je
ekscentričan ako ni za koje tri u parovima različite točke
,
i
u
ne postoji točka
u
takva da je
.(a) Dokaži da za svaki prirodni broj
postoji balansirani skup koji se sastoji od
točaka.(b) Odredi sve prirodne brojeve
za koje postoji balansirani ekscentrični skup koji se sastoji od
točaka. Izvor: Međunarodna matematička olimpijada 2015, prvi dan
Školjka