Međunarodna matematička olimpijada 2001

[ 2001 | IMO ]
Prove that for all positive real numbers a,b,c, \frac{a}{\sqrt{a^2 + 8bc}} + \frac{b}{\sqrt{b^2 + 8ca}} + \frac{c}{\sqrt{c^2 + 8ab}} \geq 1.
Let n be an odd integer greater than 1 and let c_1, c_2, \ldots, c_n be integers. For each permutation a = (a_1, a_2, \ldots, a_n) of \{1,2,\ldots,n\}, define S(a) = \sum_{i=1}^n c_i a_i. Prove that there exist permutations a \neq b of \{1,2,\ldots,n\} such that n! is a divisor of S(a)-S(b).
Twenty-one girls and twenty-one boys took part in a mathematical competition. It turned out that each contestant solved at most six problems, and for each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy. Show that there is a problem that was solved by at least three girls and at least three boys.
Consider an acute-angled triangle ABC. Let P be the foot of the altitude of triangle ABC issuing from the vertex A, and let O be the circumcenter of triangle ABC. Assume that \angle C \geq \angle B+30^{\circ}. Prove that \angle A+\angle COP < 90^{\circ}.
Let ABC be a triangle with \angle BAC = 60^{\circ}. Let AP bisect \angle BAC and let BQ bisect \angle ABC, with P on BC and Q on AC. If AB + BP = AQ + QB, what are the angles of the triangle?
Let a > b > c > d be positive integers and suppose that ac + bd = (b+d+a-c)(b+d-a+c). Prove that ab + cd is not prime.