Međunarodna matematička olimpijada 1990

[ 1990 | IMO ]
Let n \geq 3 and consider a set E of 2n - 1 distinct points on a circle. Suppose that exactly k of these points are to be colored black. Such a coloring is good if there is at least one pair of black points such that the interior of one of the arcs between them contains exactly n points from E. Find the smallest value of k so that every such coloring of k points of E is good.
Given an initial integer n_0 > 1, two players, {\mathcal A} and {\mathcal B}, choose integers n_1, n_2, n_3, \ldots alternately according to the following rules :

I.) Knowing n_{2k}, {\mathcal A} chooses any integer n_{2k + 1} such that
n_{2k} \leq n_{2k + 1} \leq n_{2k}^2.
II.) Knowing n_{2k + 1}, {\mathcal B} chooses any integer n_{2k + 2} such that
\frac {n_{2k + 1}}{n_{2k + 2}}
is a prime raised to a positive integer power.

Player {\mathcal A} wins the game by choosing the number 1990; player {\mathcal B} wins by choosing the number 1. For which n_0 does :


a.) {\mathcal A} have a winning strategy?
b.) {\mathcal B} have a winning strategy?
c.) Neither player have a winning strategy?
Chords AB and CD of a circle intersect at a point E inside the circle. Let M be an interior point of the segment EB. The tangent line at E to the circle through D, E, and M intersects the lines BC and AC at F and G, respectively. If
\frac {AM}{AB} = t,
find \frac {EG}{EF} in terms of t.
Prove that there exists a convex 1990-gon with the following two properties :

a.) All angles are equal.
b.) The lengths of the 1990 sides are the numbers 1^2, 2^2, 3^2, \cdots, 1990^2 in some order.
Determine all integers n > 1 such that
\frac {2^n + 1}{n^2}
is an integer.
Let {\mathbb Q}^ + be the set of positive rational numbers. Construct a function f : {\mathbb Q}^ + \rightarrow {\mathbb Q}^ + such that
f(xf(y)) = \frac {f(x)}{y}
for all x, y in {\mathbb Q}^ +.