« Vrati se
Dokažite da za svaki trokut sa stranicama a, b, c i nasuprotnim kutovima \alpha, \beta, \gamma vrijedi jednakost \left( \frac bc + \frac cb \right)\cos \alpha + \left( \frac ca + \frac ac \right)\cos \beta + \left( \frac ab + \frac ba \right)\cos \gamma = 3\text{.}

Slični zadaci

trokut ABC s koutovima \alpha, \beta, \gamma upisan je u pravokutnik APQR tako da tocka B lezi na stranici \overline{PQ}, a tocka C na stranici \overline{QR}. dokazite da je
\ctg\alpha\cdot P(BCQ) = \ctg\beta\cdot P(ACR) + \ctg\gamma\cdot P(ABP)
Dane su točke B i C, dok je A varijabilna, takva da je \angle BAC fiksan. Polovišta stranica \overline{AB} i \overline{AC} su točke D i E redom. Točke F i G su takve da je DF \perp AB i EG \perp AC, a BF i CG su okomite na BC. Dokažite da umnožak |BF| \cdot |CG| ne ovisi o položaju točke A.
Dan je trokut ABC takav da je |AC| \neq |BC|. Neka je M polovište stranice \overline{AB}, \alpha = \angle BAC, \beta = \angle ABC, \varphi = \angle ACM, \psi = \angle BCM. Dokažite da je

\frac{\sin \alpha \sin \beta}{\sin(\alpha - \beta)} = \frac{\sin \varphi \sin \psi}{\sin (\varphi - \psi)}.
U jednakokračnom trokutu ABC s krakovima \overline{AB} i \overline{AC}, D je polovište osnovice \overline{BC}. Neka je točka E nožište okomice iz D na stranicu \overline{AB}, te F polovište dužine \overline{DE}. Dokaži da je AF okomito na EC.
U trokutu ABC vrijedi \left\vert AB \right\vert = \left\vert AC \right\vert. Na stranici \overline{AC} nalazi se točka D takva da je \left\vert AD \right\vert < \left\vert CD \right\vert, a na dužini \overline{BD} točka P takva da je \angle{APC} pravi kut. Ako je \angle{ABP} = \angle{BCP}, odredi \left\vert AD \right\vert : \left\vert CD \right\vert.
U trokutu s kutovima \alpha, \beta i \gamma vrijedi jednakost \sin^2\alpha +\sin^2\beta =\sin\gamma. Ako je poznato da su kutovi \alpha i \beta šiljasti, dokažite da je kut \gamma pravi.