Let
be distinct positive integers and let
be a set of
positive integers not containing
A grasshopper is to jump along the real axis, starting at the point
and making
jumps to the right with lengths
in some order. Prove that the order can be chosen in such a way that the grasshopper never lands on any point in
Proposed by Dmitry Khramtsov, Russia








Proposed by Dmitry Khramtsov, Russia
Let
be a triangle with circumcentre
. The points
and
are interior points of the sides
and
respectively. Let
and
be the midpoints of the segments
and
. respectively, and let
be the circle passing through
and
. Suppose that the line
is tangent to the circle
. Prove that
Proposed by Sergei Berlov, Russia
















Proposed by Sergei Berlov, Russia