IMO Shortlist 1960 problem 3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
In a given right triangle ABC, the hypotenuse BC, of length a, is divided into n equal parts (n and odd integer). Let \alpha be the acute angel subtending, from A, that segment which contains the mdipoint of the hypotenuse. Let h be the length of the altitude to the hypotenuse fo the triangle. Prove that: \tan{\alpha}=\dfrac{4nh}{(n^2-1)a}.
Izvor: Međunarodna matematička olimpijada, shortlist 1960