IMO Shortlist 1966 problem 17
Kvaliteta:
Avg: 0,0Težina:
Avg: 0,0 Let and be two arbitrary parallelograms in the space, and let be points dividing the segments in equal ratios.
a.) Prove that the quadrilateral is a parallelogram.
b.) What is the locus of the center of the parallelogram when the point moves on the segment ?
(Consecutive vertices of the parallelograms are labelled in alphabetical order.
a.) Prove that the quadrilateral is a parallelogram.
b.) What is the locus of the center of the parallelogram when the point moves on the segment ?
(Consecutive vertices of the parallelograms are labelled in alphabetical order.
Izvor: Međunarodna matematička olimpijada, shortlist 1966