IMO Shortlist 1966 problem 26
Dodao/la:
arhiva2. travnja 2012. %V0
Prove the inequality
a.) $\left( a_{1}+a_{2}+...+a_{k}\right) ^{2}\leq k\left(a_{1}^{2}+a_{2}^{2}+...+a_{k}^{2}\right) ,$
where $k\geq 1$ is a natural number and $a_{1},$ $a_{2},$ $...,$ $a_{k}$ are arbitrary real numbers.
b.) Using the inequality (1), show that if the real numbers $a_{1},$ $a_{2},$ $...,$ $a_{n}$ satisfy the inequality
$$a_{1}+a_{2}+...+a_{n}\geq \sqrt{\left( n-1\right) \left(a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2}\right) },$$
then all of these numbers $a_{1},$ $a_{2},$ $\ldots,$ $a_{n}$ are non-negative.
Izvor: Međunarodna matematička olimpijada, shortlist 1966