IMO Shortlist 1966 problem 32


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
The side lengths a, b, c of a triangle ABC form an arithmetical progression (such that b-a=c-b). The side lengths a_{1}, b_{1}, c_{1} of a triangle A_{1}B_{1}C_{1} also form an arithmetical progression (with b_{1}-a_{1}=c_{1}-b_{1}). (Hereby, a=BC, b=CA, c=AB, a_{1}=B_{1}C_{1}, b_{1}=C_{1}A_{1}, c_{1}=A_{1}B_{1}.) Moreover, we know that \measuredangle CAB=\measuredangle C_{1}A_{1}B_{1}.

Show that triangles ABC and A_{1}B_{1}C_{1} are similar.
Izvor: Međunarodna matematička olimpijada, shortlist 1966