IMO Shortlist 1966 problem 33
Dodao/la:
arhiva2. travnja 2012. Given two internally tangent circles; in the bigger one we inscribe an equilateral triangle. From each of the vertices of this triangle, we draw a tangent to the smaller circle. Prove that the length of one of these tangents equals the sum of the lengths of the two other tangents.
%V0
Given two internally tangent circles; in the bigger one we inscribe an equilateral triangle. From each of the vertices of this triangle, we draw a tangent to the smaller circle. Prove that the length of one of these tangents equals the sum of the lengths of the two other tangents.
Izvor: Međunarodna matematička olimpijada, shortlist 1966