IMO Shortlist 1966 problem 38


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Two concentric circles have radii R and r respectively. Determine the greatest possible number of circles that are tangent to both these circles and mutually nonintersecting. Prove that this number lies between \frac 32 \cdot \frac{\sqrt R +\sqrt r }{\sqrt R -\sqrt r } -1 and \frac{63}{20} \cdot \frac{R+r}{R-r}.
Izvor: Međunarodna matematička olimpijada, shortlist 1966