IMO Shortlist 1966 problem 42


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Given a finite sequence of integers a_{1}, a_{2}, ..., a_{n} for n\geq 2. Show that there exists a subsequence a_{k_{1}}, a_{k_{2}}, ..., a_{k_{m}}, where 1\leq k_{1}\leq k_{2}\leq...\leq k_{m}\leq n, such that the number a_{k_{1}}^{2}+a_{k_{2}}^{2}+...+a_{k_{m}}^{2} is divisible by
n.

Note by Darij: Of course, the 1\leq k_{1}\leq k_{2}\leq ...\leq k_{m}\leq n should be understood as 1\leq k_{1}<k_{2}<...<k_{m}\leq n; else, we could take m=n and k_{1}=k_{2}=...=k_{m}, so that the number a_{k_{1}}^{2}+a_{k_{2}}^{2}+...+a_{k_{m}}^{2}=n^{2}a_{k_{1}}^{2} will surely be divisible by n.
Izvor: Međunarodna matematička olimpijada, shortlist 1966