IMO Shortlist 1966 problem 43


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Given 5 points in a plane, no three of them being collinear. Each two of these 5 points are joined with a segment, and every of these segments is painted either red or blue; assume that there is no triangle whose sides are segments of equal color.

a.) Show that:

(1) Among the four segments originating at any of the 5 points, two are red and two are blue.

(2) The red segments form a closed way passing through all 5 given points. (Similarly for the blue segments.)

b.) Give a plan how to paint the segments either red or blue in order to have the condition (no triangle with equally colored sides) satisfied.
Izvor: Međunarodna matematička olimpijada, shortlist 1966