IMO Shortlist 1967 problem 3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Suppose \tan \alpha = \dfrac{p}{q}, where p and q are integers and q \neq 0. Prove that the number \tan \beta for which \tan {2 \beta} = \tan {3 \alpha} is rational only when p^2 + q^2 is the square of an integer.
Izvor: Međunarodna matematička olimpijada, shortlist 1967