IMO Shortlist 1967 problem 4


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Prove the following statement: If r_1 and r_2 are real numbers whose quotient is irrational, then any real number x can be approximated arbitrarily well by the numbers of the form \ z_{k_1,k_2} = k_1r_1 + k_2r_2 integers, i.e. for every number x and every positive real number p two integers k_1 and k_2 can be found so that |x - (k_1r_1 + k_2r_2)| < p holds.
Izvor: Međunarodna matematička olimpijada, shortlist 1967