IMO Shortlist 1967 problem 2


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
If x is a positive rational number show that x can be uniquely expressed in the form \displaystyle x = \sum^n_{k=1} \frac{a_k}{k!} where a_1, a_2, \ldots are integers, 0 \leq a_n \leq n - 1, for n > 1, and the series terminates. Show that x can be expressed as the sum of reciprocals of different integers, each of which is greater than 10^6.
Izvor: Međunarodna matematička olimpijada, shortlist 1967