IMO Shortlist 1967 problem 4


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 0.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Let k_1 and k_2 be two circles with centers O_1 and O_2 and equal radius r such that O_1O_2 = r. Let A and B be two points lying on the circle k_1 and being symmetric to each other with respect to the line O_1O_2. Let P be an arbitrary point on k_2. Prove that
PA^2 + PB^2 \geq 2r^2.
Source: Međunarodna matematička olimpijada, shortlist 1967