IMO Shortlist 1967 problem 2


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let ABCD be a regular tetrahedron. To an arbitrary point M on one edge, say CD, corresponds the point P = P(M) which is the intersection of two lines AH and BK, drawn from A orthogonally to BM and from B orthogonally to AM. What is the locus of P when M varies ?
Izvor: Međunarodna matematička olimpijada, shortlist 1967