IMO Shortlist 1967 problem 1
Dodao/la:
arhiva2. travnja 2012. Given

numbers:

,

determine the number of pairs

for which

where

is a non-negative integer.
%V0
Given $m+n$ numbers: $a_i,$ $i = 1,2, \ldots, m,$ $b_j$, $j = 1,2, \ldots, n,$ determine the number of pairs $(a_i,b_j)$ for which $|i-j| \geq k,$ where $k$ is a non-negative integer.
Izvor: Međunarodna matematička olimpijada, shortlist 1967