IMO Shortlist 1967 problem 5


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Show that a triangle whose angles A, B, C satisfy the equality
\frac{\sin^2 A + \sin^2 B + \sin^2 C}{\cos^2 A + \cos^2 B + \cos^2 C} = 2
is a rectangular triangle.
Izvor: Međunarodna matematička olimpijada, shortlist 1967