IMO Shortlist 1967 problem 3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Suppose that p and q are two different positive integers and x is a real number. Form the product (x+p)(x+q). Find the sum S(x,n) = \sum (x+p)(x+q), where p and q take values from 1 to n. Does there exist integer values of x for which S(x,n) = 0.
Izvor: Međunarodna matematička olimpijada, shortlist 1967