IMO Shortlist 1967 problem 5


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
If x,y,z are real numbers satisfying relations
x+y+z = 1 \quad \textrm{and} \quad \arctan x + \arctan y + \arctan z = \frac{\pi}{4},
prove that x^{2n+1} + y^{2n+1} + z^{2n+1} = 1 holds for all positive integers n.
Izvor: Međunarodna matematička olimpijada, shortlist 1967