IMO Shortlist 1967 problem 1
Dodao/la:
arhiva2. travnja 2012. The parallelogram
has
, and the triangle
has all angles acute. Prove that circles radius
and center
cover the parallelogram if and only
%V0
The parallelogram $ABCD$ has $AB=a,AD=1,$ $\angle BAD=A$, and the triangle $ABD$ has all angles acute. Prove that circles radius $1$ and center $A,B,C,D$ cover the parallelogram if and only
$$a\le\cos A+\sqrt3\sin A.$$
Izvor: Međunarodna matematička olimpijada, shortlist 1967