IMO Shortlist 1967 problem 5


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
A linear binomial l(z) = Az + B with complex coefficients A and B is given. It is known that the maximal value of |l(z)| on the segment -1 \leq x \leq 1 (y = 0) of the real line in the complex plane z = x + iy is equal to M. Prove that for every z
|l(z)| \leq M \rho,
where \rho is the sum of distances from the point P=z to the points Q_1: z = 1 and Q_3: z = -1.
Izvor: Međunarodna matematička olimpijada, shortlist 1967