IMO Shortlist 1967 problem 6


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
On the circle with center 0 and radius 1 the point A_0 is fixed and points A_1, A_2, \ldots, A_{999}, A_{1000} are distributed in such a way that the angle \angle A_00A_k = k (in radians). Cut the circle at points A_0, A_1, \ldots, A_{1000}. How many arcs with different lengths are obtained. ?
Izvor: Međunarodna matematička olimpijada, shortlist 1967