IMO Shortlist 1967 problem 2
Dodao/la:
arhiva2. travnja 2012. Let

and

be positive integers such that

,

. Show that:
%V0
Let $n$ and $k$ be positive integers such that $1 \leq n \leq N+1$, $1 \leq k \leq N+1$. Show that: $$\min_{n \neq k} |\sin n - \sin k| < \frac{2}{N}.$$
Izvor: Međunarodna matematička olimpijada, shortlist 1967