IMO Shortlist 1968 problem 12


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
If a and b are arbitrary positive real numbers and m an integer, prove that
\Bigr( 1+\frac ab \Bigl)^m +\Bigr( 1+\frac ba \Bigl)^m  \geq 2^{m+1}.
Izvor: Međunarodna matematička olimpijada, shortlist 1968