IMO Shortlist 1968 problem 21
Dodao/la:
arhiva2. travnja 2012. Let

be positive integers. Find all positive integers

such that
%V0
Let $a_0, a_1, \ldots , a_k \ (k \geq 1)$ be positive integers. Find all positive integers $y$ such that
$$a_0 | y, (a_0 + a_1) | (y + a1), \ldots , (a_0 + a_n) | (y + a_n).$$
Izvor: Međunarodna matematička olimpijada, shortlist 1968