IMO Shortlist 1969 problem 5
Dodao/la:
arhiva2. travnja 2012. Let
be the centroid of the triangle
Prove that all conics passing through the points
are hyperbolas.
Find the locus of the centers of these hyperbolas.
%V0
$(BEL 5)$ Let $G$ be the centroid of the triangle $OAB.$
$(a)$ Prove that all conics passing through the points $O,A,B,G$ are hyperbolas.
$(b)$ Find the locus of the centers of these hyperbolas.
Izvor: Međunarodna matematička olimpijada, shortlist 1969