IMO Shortlist 1969 problem 9


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
(BUL 3) One hundred convex polygons are placed on a square with edge of length 38 cm. The area of each of the polygons is smaller than \pi cm^2, and the perimeter of each of the polygons is smaller than 2\pi cm. Prove that there exists a disk with radius 1 in the square that does not intersect any of the polygons.
Izvor: Međunarodna matematička olimpijada, shortlist 1969