IMO Shortlist 1969 problem 15
Dodao/la:
arhiva2. travnja 2012. Let
be nonnegative integers. Prove that
, where
%V0
$(CZS 4)$ Let $K_1,\cdots , K_n$ be nonnegative integers. Prove that $K_1!K_2!\cdots K_n! \ge \left[\frac{K}{n}\right]!^n$, where $K = K_1 + \cdots + K_n$
Izvor: Međunarodna matematička olimpijada, shortlist 1969