IMO Shortlist 1969 problem 16


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
(CZS 5) A convex quadrilateral ABCD with sides AB = a, BC = b, CD = c, DA = d and angles \alpha = \angle DAB, \beta = \angle ABC, \gamma = \angle BCD, and \delta = \angle CDA is given. Let s = \frac{a + b + c +d}{2} and P be the area of the quadrilateral. Prove that P^2 = (s - a)(s - b)(s - c)(s - d) - abcd \cos^2\frac{\alpha +\gamma}{2}
Izvor: Međunarodna matematička olimpijada, shortlist 1969