IMO Shortlist 1969 problem 21


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
(FRA 4) A right-angled triangle OAB has its right angle at the point B. An arbitrary circle with center on the line OB is tangent to the line OA. Let AT be the tangent to the circle different from OA (T is the point of tangency). Prove that the median from B of the triangle OAB intersects AT at a point M such that MB = MT.
Izvor: Međunarodna matematička olimpijada, shortlist 1969