IMO Shortlist 1969 problem 28


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
(GBR 5) Let us define u_0 = 0, u_1 = 1 and for n\ge 0, u_{n+2} = au_{n+1}+bu_n, a and b being positive integers. Express u_n as a polynomial in a and b. Prove the result. Given that b is prime, prove that b divides a(u_b -1).
Izvor: Međunarodna matematička olimpijada, shortlist 1969