IMO Shortlist 1969 problem 33


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
(GDR 5) Given a ring G in the plane bounded by two concentric circles with radii R and \frac{R}{2}, prove that we can cover this region with 8 disks of radius \frac{2R}{5}. (A region is covered if each of its points is inside or on the border of some disk.)
Izvor: Međunarodna matematička olimpijada, shortlist 1969