IMO Shortlist 1969 problem 34


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
(HUN 1) Let a and b be arbitrary integers. Prove that if k is an integer not divisible by 3, then (a + b)^{2k}+ a^{2k} +b^{2k} is divisible by a^2 +ab+ b^2
Izvor: Međunarodna matematička olimpijada, shortlist 1969