IMO Shortlist 1969 problem 37
Dodao/la:
arhiva2. travnja 2012. IMO2 If
are real constants, and if
has two zeros
and
whose difference is not a multiple of
, prove that
%V0
$(HUN 4)$IMO2 If $a_1, a_2, . . . , a_n$ are real constants, and if $y = \cos(a_1 + x) +2\cos(a_2+x)+ \cdots+ n \cos(a_n + x)$ has two zeros $x_1$ and $x_2$ whose difference is not a multiple of $\pi$, prove that $y = 0.$
Izvor: Međunarodna matematička olimpijada, shortlist 1969