IMO Shortlist 1969 problem 37


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
(HUN 4)IMO2 If a_1, a_2, . . . , a_n are real constants, and if y = \cos(a_1 + x) +2\cos(a_2+x)+ \cdots+ n \cos(a_n + x) has two zeros x_1 and x_2 whose difference is not a multiple of \pi, prove that y = 0.
Izvor: Međunarodna matematička olimpijada, shortlist 1969