IMO Shortlist 1969 problem 48
Dodao/la:
arhiva2. travnja 2012. %V0
$(NET 3)$ Let $x_1, x_2, x_3, x_4,$ and $x_5$ be positive integers satisfying
$$x_1 +x_2 +x_3 +x_4 +x_5 = 1000,$$
$$x_1 -x_2 +x_3 -x_4 +x_5 > 0,$$
$$x_1 +x_2 -x_3 +x_4 -x_5 > 0,$$
$$-x_1 +x_2 +x_3 -x_4 +x_5 > 0,$$
$$x_1 -x_2 +x_3 +x_4 -x_5 > 0,$$
$$-x_1 +x_2 -x_3 +x_4 +x_5 > 0$$
$(a)$ Find the maximum of $(x_1 + x_3)^{x_2+x_4}$
$(b)$ In how many different ways can we choose $x_1, . . . , x_5$ to obtain the desired maximum?
Izvor: Međunarodna matematička olimpijada, shortlist 1969