IMO Shortlist 1969 problem 50
Dodao/la:
arhiva2. travnja 2012. 
The bisectors of the exterior angles of a pentagon

form another pentagon

Construct

from the given pentagon
%V0
$(NET 5)$ The bisectors of the exterior angles of a pentagon $B_1B_2B_3B_4B_5$ form another pentagon $A_1A_2A_3A_4A_5.$ Construct $B_1B_2B_3B_4B_5$ from the given pentagon $A_1A_2A_3A_4A_5.$
Izvor: Međunarodna matematička olimpijada, shortlist 1969