IMO Shortlist 1969 problem 53
Dodao/la:
arhiva2. travnja 2012. 
Given two segments

and

not in the same plane, find the locus of points

such that
%V0
$(POL 2)$ Given two segments $AB$ and $CD$ not in the same plane, find the locus of points $M$ such that $MA^2 +MB^2 = MC^2 +MD^2.$
Izvor: Međunarodna matematička olimpijada, shortlist 1969