IMO Shortlist 1969 problem 66


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
(USS 3) (a) Prove that if 0 \le a_0 \le a_1 \le a_2, then (a_0 + a_1x - a_2x^2)^2 \le (a_0 + a_1 + a_2)^2\left(1 +\frac{1}{2}x+\frac{1}{3}x^2+\frac{1}{2}x^3+x^4\right)
(b) Formulate and prove the analogous result for polynomials of third degree.
Izvor: Međunarodna matematička olimpijada, shortlist 1969