IMO Shortlist 1969 problem 69


Kvaliteta:
  Avg: 5,0
Težina:
  Avg: 10,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
(YUG 1) Suppose that positive real numbers x_1, x_2, x_3 satisfy
x_1x_2x_3 > 1, x_1 + x_2 + x_3 <\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}
Prove that:
(a) None of x_1, x_2, x_3 equals 1.
(b) Exactly one of these numbers is less than 1.
Izvor: Međunarodna matematička olimpijada, shortlist 1969